
If you’ve spent time poking around macOS,
you may have encountered the system’s uni-

!ed logging mechanism, a resource that can
help you understand macOS internals and, as

you’ll soon see, uncover malware. In this chapter, I’ll
start by highlighting the various kinds of information
that can be extracted from these logs to detect mali-
cious activity. We’ll then reverse engineer the macOS
log utility and one of its core private frameworks so we
can programmatically ingest real-time information
directly and ef!ciently from the logging subsystem.

6
L O G M O N I T O R I N G

142!!!Chapter 6

Exploring Log Information
I’ll begin by covering a few examples of useful activity that can show up in
the system log, starting with webcam access. Especially insidious malware
specimens, including FruitFly, Mokes, and Crisis, surreptitiously spy on their
victims through the infected host’s webcam. Accessing the webcam generates
system log messages, however. For example, depending on the version of
macOS, the Core Media I/O subsystem may produce the following:

CMIOExtensionProvider.m:2671:-[CMIOExtensionProvider setDevicePropertyValuesForClientID:
deviceID:propertyValues:reply:] <CMIOExtensionProvider>,
3F4ADF48-8358-4A2E-896B-96848FDB6DD5, propertyValues {
 CMIOExtensionPropertyDeviceControlPID = 90429;
}

The bolded value contains the ID of the process accessing the webcam.
Although the process could be legitimate, such as a Zoom or FaceTime ses-
sion launched by the user for a virtual meeting, it’s prudent to con!rm that
this is the case, as the responsible process could also be malware attempting
to spy on the user. Because Apple doesn’t provide an API that identi!es the
process accessing the webcam, log messages are one of the only ways to reli-
ably get this information most of the time.

Other activities that often show up in system logs are remote logins,
which could indicate a compromise, such as attackers gaining initial access
to a host or even returning to a previously infected one. For example, the
IPStorm malware spreads to victims by brute-forcing SSH logins.1 Another
interesting case is XCSSET, which locally initiates a seemingly remote con-
nection back to the host to bypass the macOS security mechanism known
as Transparency, Consent, and Control (TCC).2

When a remote login occurs via SSH, the system generates log messages
such as the following:

sshd: Accepted keyboard-interactive/pam for Patrick from 192.168.1.176 port 59363 ssh2
sshd: (libpam.2.dylib) in pam_sm_setcred(): Establishing credentials
sshd: (libpam.2.dylib) in pam_sm_setcred(): Got user: Patrick
...
sshd: (libpam.2.dylib) in pam_sm_open_session(): UID: 501
sshd: (libpam.2.dylib) in pam_sm_open_session(): server_URL: (null)
sshd: (libpam.2.dylib) in pam_sm_open_session(): path: (null)
sshd: (libpam.2.dylib) in pam_sm_open_session(): homedir: /Users/Patrick
sshd: (libpam.2.dylib) in pam_sm_open_session(): username: Patrick

These log messages provide the source IP address of the connection, as
well as the identity of the user who logged in. This information can help
defenders determine whether the SSH session is legitimate (perhaps a
remote worker connecting to their of!ce machine) or unauthorized.

Log messages can also provide insight into the TCC mechanism, which
governs access to sensitive information and hardware features. In an
Objective by the Sea conference talk, “The Clock Is TCCing,” researchers

Log Monitoring!!!143

Calum Hall and Luke Roberts noted that messages found in the uni!ed
log enabled them to determine several pieces of information for a given
TCC event (for example, malware attempting to capture the screen or
access a user’s documents), including the resource for which the process
requested access, the responsible and target processes, and whether the sys-
tem denied or approved the request and why.3

At this point, it may be tempting to treat log messages as a panacea for
malware detection. Don’t. Apple doesn’t of!cially support log messages
and has often changed their contents or removed them altogether, even
between minor releases of macOS. For example, on older versions of the
operating system, you could detect microphone access and identify the pro-
cess responsible for it by looking for the following log message:

send: 0/7 synchronous to com.apple.tccd.system: request: msgID=408.11,
function=TCCAccessRequest, service=kTCCServiceMicrophone, target_token={pid:23207, auid:501,
euid:501},

Unfortunately, Apple updated the relevant macOS framework so it
no longer produces the message. If your security tool relied solely on this
indicator to detect unauthorized microphone access, it would no longer
function. Thus, it’s best to treat log messages as initial signs of suspicious
behavior, then investigate further.

The Uni!ed Logging Subsystem
We often think of log messages as a way to !gure out what happened in
the past. But macOS also lets you subscribe to the stream of messages as
they’re delivered to the logging subsystem in essentially real time. Better
yet, the logging subsystem supports the !ltering of these messages via cus-
tom predicates, providing ef!cient and unparalleled insight into the activity
happening on the system.

In versions of macOS beginning with 10.12, this logging mechanism
is called the uni!ed logging system.4 A replacement of the traditional syslog
interface, it records messages from core system daemons, operating system
components, and any third-party software that generates logging messages
via the OSLog APIs.

It’s worth noting that if you examine log messages in the uni!ed sys-
tem log, you may encounter redactions; the logging subsystem replaces any
information deemed sensitive with the string <private>. To disable this func-
tionality, you could install a con!guration pro!le.5 While useful for under-
standing undocumented features of the operating system, however, you
shouldn’t disable log redactions on end-user or production systems, which
would make sensitive data available to anybody with access to the log.

144!!!Chapter 6

Manually Querying the log Utility
To manually interface with the logging subsystem, use the macOS log utility
found in /usr/bin:

% /usr/bin/log
usage:
 log <command>

global options:
 -?, --help
 -q, --quiet
 -v, --verbose

commands:
 collect gather system logs into a log archive
 config view/change logging system settings
 erase delete system logging data
 show view/search system logs
 stream watch live system logs
 stats show system logging statistics

further help:
 log help <command>
 log help predicates

You can search previously logged data with the show #ag or use the
stream #ag to view logging data as it’s generated in real time. Unless you
specify otherwise, the output will include messages with a default log level
only. To override this setting for past data, use the --info or --debug #ag,
along with show, to view further information and debug messages, respec-
tively. For streaming data, specify both stream and --level, then either info
or debug. These #ags are hierarchical; specifying the debug level will return
informational and default messages too.

Use the --predicate #ag with a predicate to !lter the output. A rather
extensive list of valid predicate !elds allows you to !nd messages based on
the process, subsystem, type, and much more. For example, to stream log
messages from the kernel, execute the following:

% log stream --predicate 'process == "kernel"'

There is often more than one way to craft a predicate. For instance, we
could also receive kernel messages by using 'processIdentifier == 0', as the
kernel always has a process ID of 0.

To stream messages from the security subsystem, enter the following:

% log stream --predicate 'subsystem == "com.apple.securityd"'

The examples shown here all use the equality operator (==). However,
predicates can use many other operators, including comparative operators

Log Monitoring!!!145

(such as ==, !=, and <), logical operators (such as AND and OR), and even mem-
bership operators (such as BEGINSWITH and CONTAINS). Membership operators
are powerful, as they allow you to craft !lter predicates resembling regular
expressions.

The log man pages and the command log help predicates provide a suc-
cinct overview of predicates.6

Reverse Engineering log APIs
To read log data programmatically, we could use the OSLog APIs.7 These
APIs return only historical data, however, and in the context of malware
detection, we’re much more interested in real-time events. No public API
allows us to achieve this, but by reverse engineering the log utility (speci!-
cally, the code that backs the stream command), we can uncover exactly
how to ingest logging messages as they enter the uni!ed logging subsystem.
Moreover, by providing a !lter predicate, we can receive only messages of
interest to us.

Although I won’t cover the full details of reversing the log utility, I’ll pro-
vide an overview of the process in this section. Of course, you could apply a
similar process against other Apple utilities and frameworks to extract private
APIs useful for malware detection (as we showed in Chapter 3 while imple-
menting package code signing checks).

First, we need to !nd the binary that implements the logging subsys-
tem’s APIs so we can invoke them from our own code. Normally, we’ll !nd
such APIs in a framework that is dynamically linked into the utility’s binary.
By executing otool with the -L command line option, we can view the frame-
works against which the log utility is dynamically linked:

% otool -L /usr/bin/log
/System/Library/PrivateFrameworks/ktrace.framework/Versions/A/ktrace
/System/Library/PrivateFrameworks/LoggingSupport.framework/Versions/A/LoggingSupport
/System/Library/PrivateFrameworks/CoreSymbolication.framework/Versions/A/CoreSymbolication
...

Based on its name, the LoggingSupport framework seems likely to con-
tain relevant logging APIs. In past versions of macOS, you could !nd the
framework in the /System/Library/PrivateFrameworks/ directory, while in
newer versions, you’ll !nd it in the shared dyld cache.

After loading the framework into Hopper (which can directly load
frameworks from the dyld cache), we !nd that the framework implements
an undocumented class named OSLogEventLiveStream whose base class is
OSLogEventStreamBase. These classes implement methods such as activate,
setEventHandler:, and setFilterPredicate:. We also encounter an undocu-
mented OSLogEventProxy class that appears to represent log events. Here are
some of its properties:

NSString* process;
int processIdentifier;
NSString* processImagePath;

146!!!Chapter 6

NSString* sender;
NSString* senderImagePath;
NSString* category;
NSString* subsystem;
NSDate* date;
NSString* composedMessage;

By examining the log utility, we can see how it uses these classes and
their methods to capture streaming log data. For example, here is a decom-
piled snippet from the log binary:

r21 = [OSLogEventLiveStream initWithLiveSource:...];
[r21 setEventHandler:&var_110];
...
[r21 setFilterPredicate:r22];

printf("Filtering the log data using \"%s\"\n", @selector(UTF8String));
...
[r21 activate];

In the decompilation, we !rst see a call to initWithLiveSource: initializ-
ing an OSLogEventLiveStream object. Calls to methods such as setEventHandler:
and setFilterPredicate: then con!gure this object, stored in the r21 register.
After the predicate is set, a helpful debug message indicates that a provided
predicate can !lter log data. Finally, the object activates, which triggers the
ingestion of streaming log messages matching the speci!ed predicate.

Streaming Log Data
Using the information we gleaned by reverse engineering the log binary
and LoggingSupport framework, we can craft code to directly stream data
from the universal logging subsystem in our detection tools. Here, we’ll
cover important parts of the code, though you’re encouraged to consult the
full code, found in this chapter’s logStream project.

Listing 6-1 shows a method that accepts a log !lter predicate, a log level
(such as default, info, or debug), and a callback function to invoke for each
logging event that matches the speci!ed predicate.

#define LOGGING_SUPPORT @"/System/Library/PrivateFrameworks/LoggingSupport.framework"

-(void)start:(NSPredicate*)predicate
level:(NSUInteger)level eventHandler:(void(^)(OSLogEventProxy*))eventHandler {
 [[NSBundle bundleWithPath:LOGGING_SUPPORT] load]; 1
 Class LiveStream = NSClassFromString(@"OSLogEventLiveStream"); 2

 self.liveStream = [[LiveStream alloc] init]; 3

 @try {
 [self.liveStream setFilterPredicate:predicate]; 4
 } @catch (NSException* exception) {

Log Monitoring!!!147

 // Code to handle invalid predicate removed for brevity
 }
 [self.liveStream setInvalidationHandler:^void (int reason, id streamPosition) {
 ;
 }];

 [self.liveStream setDroppedEventHandler:^void (id droppedMessage) {
 ;
 }];

 [self.liveStream setEventHandler:eventHandler]; 5
 [self.liveStream setFlags:level]; 6

 [self.liveStream activate]; 7
}

Listing 6-1: Starting a logging stream with a specified predicate

Note that I’ve omitted part of this code, such as the class de!nition and
properties of the custom log class.

After loading the logging support framework 1, the code retrieves
the private OSLogEventLiveStream class by name 2. Now we can instantiate
an instance of the class 3. We then con!gure this instance by setting the
!lter predicate 4, making sure to wrap it in a try...catch block, as the set
Filter Predicate: method can throw an exception if provided with an invalid
predicate. Next, we set the event handler, which the framework will invoke
anytime the universal logging subsystem ingests a log message matching the
speci!ed predicate 5. We pass these values into the start:level:eventHandler:
method, where the predicate tells the log stream how to !lter the messages
it delivers to the event handler. We set the logging level via the setFlags:
method 6. Finally, we start the stream with a call to the activate method 7.

Listing 6-2 shows how to create an instance of the custom log monitor
class and then use it to begin ingesting log messages.

NSPredicate* predicate = [NSPredicate predicateWithFormat:<some string predicate>]; 1

LogMonitor* logMonitor = [[LogMonitor alloc] init]; 2

[logMonitor start:predicate level:Log_Level_Debug eventHandler:^(OSLogEventProxy* event) {
 printf("New Log Message: %s\n\n", event.description.UTF8String);
}];

[NSRunLoop.mainRunLoop run];

Listing 6-2: Interfacing with the custom log stream class

First, the code creates a predicate object from a string 1. Note that in
production code, you should also wrap this action in a try...catch block,
as the predicateWithFormat: method throws a catchable exception if the pro-
vided predicate is invalid. Next, we create a LogMonitor object and invoke
its start:level:eventHandler: method 2. Note that for the level, we pass in
Log_Level_Debug. Since the level is hierarchal, this will ensure we capture all

148!!!Chapter 6

message types, including those whose type is info and default. Now the code
will invoke our event handler anytime a log message matching the speci!ed
predicate streams to the universal logging subsystem. Currently, this han-
dler simply prints out the OSLogEventProxy object.

To compile this code, we’ll need the undocumented class and method
de!nitions we extracted from the LoggingSupport framework. These de!ni-
tions live in the logStream project’s LogStream.h !le; Listing 6-3 provides a
snippet of them.

@interface OSLogEventLiveStream : NSObject
 -(void)activate;
 -(void)setFilterPredicate:(NSPredicate*)predicate;
 -(void)setEventHandler:(void(^)(id))callback;
 ...
 @property(nonatomic) unsigned long long flags;
@end

@interface OSLogEventProxy : NSObject
 @property(readonly, nonatomic) NSString* process;
 @property(readonly, nonatomic) int processIdentifier;
 @property(readonly, nonatomic) NSString* processImagePath;
 ...
@end

Listing 6-3: The interface for the private OSLogEventLiveStream and OSLogEventProxy classes

Once we compile this code, we can execute it with a user-speci!ed pred-
icate. For example, let’s monitor the log messages of the security subsystem,
com.apple.securityd:

% ./logStream 'subsystem == "com.apple.securityd"'
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1300, open(%s,0x%x,0x%x) = %d>
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1300, %p is a thin file (%s)>
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1300, %zd signing bytes in %d blob(s) from %s(%s)>
New Log Message:
<OSLogEventProxy: 0x155804080, 0x0, 400, 1009, network access disabled by policy>

Although we’re indeed capturing streaming log messages that match
the speci!ed predicate, the messages don’t appear all that useful at
!rst glance. This is because our event handler simply prints out the
OSLogEventProxy object via a call to its description method, which doesn’t
include all components of the message.

Extracting Log Object Properties
To detect activity that could indicate the presence of malware, you’ll want
to extract the OSLogEventProxy log method object’s properties. While disas-
sembling, we encountered several useful properties, such as the process
ID, path, and message, but other interesting ones exist as well. Because

Log Monitoring!!!149

Objective-C is introspective, you can dynamically query any object, includ-
ing undocumented ones, to reveal its properties and values. This requires a
foray into the bowels of the Objective-C runtime; nevertheless, you’ll !nd it
useful to understand any undocumented classes you encounter, especially
when leveraging Apple’s private frameworks.

Listing 6-4 is a simple function that accepts any Objective-C object, then
prints out its properties and their values. It’s based on code by Pat Zearfoss.8

#import <objc/message.h> 1
#import <objc/runtime.h>

void inspectObject(id object) {
 unsigned int propertyCount = 0 ;
 objc_property_t* properties = class_copyPropertyList([object class], &propertyCount); 2

 for(unsigned int i = 0; i < propertyCount; i++) {
 NSString* name = [NSString stringWithUTF8String:property_getName(properties[i])]; 3

 printf("\n%s: ", [name UTF8String]);

 SEL sel = sel_registerName(name.UTF8String); 4
 const char* attr = property_getAttributes(properties[i]); 5

 switch(attr[1]) {
 case '@':
 printf("%s\n",
 [[((id (*)(id, SEL))objc_msgSend)(object, sel) description] UTF8String]);
 break;
 case 'i':
 printf("%i\n", ((int (*)(id, SEL))objc_msgSend)(object, sel));
 break;
 case 'f':
 printf("%f\n", ((float (*)(id, SEL))objc_msgSend)(object, sel));
 break;
 default:
 break;
 }
 }

 free(properties);
 return;
}

Listing 6-4: Introspecting the properties of an Objective-C object

First, the code imports the required Objective-C runtime header !les 1.
Then it invokes the class_copyPropertyList API to get an array and the count
of the object’s properties 2. We iterate over this array to examine each prop-
erty, invoking the property_getName method to get the name of the property 3.
Then the sel_registerName function retrieves a selector for the property 4.
We’ll use the property selector later to retrieve the object’s value.

150!!!Chapter 6

Next, to determine the type of the property, we invoke the property
_getAttributes method 5. This returns an array of attributes, with the
property type as the second item (at index 1). The code handles common
types such as Objective-C objects (@), integers (i), and #oats (f). For each
type, we invoke the objc_msgSend function on the object with the property’s
selector to retrieve the property’s value.

If you look closely, you’ll see that the call to objc_msgSend is typecast
appropriately for each property type. For a list of type encodings, see
Apple’s “Type Encodings” developer documentation.9 To inspect Swift
objects, use Swift’s Mirror API.10

In the log monitor code, we can now invoke the inspectObject func-
tion with each OSLogEventProxy object received from the logging subsystem
(Listing 6-5).

NSPredicate* predicate = [NSPredicate predicateWithFormat:<some string predicate>];

[logMonitor start:predicate level:Log_Level_Debug eventHandler:
^(OSLogEventProxy* event) {
 inspectObject(event);
}];

Listing 6-5: Inspecting each log message, encapsulated in an OSLogEventProxy object

If we compile and execute the program, we should now receive a more
comprehensive view of each log message. For example, by monitoring mes-
sages related to XProtect, the built-in antimalware scanner found on cer-
tain versions of macOS, we can observe its scan of an untrusted application:

% ./logStream 'subsystem == "com.apple.xprotect"'

New Log Message:

composedMessage: Starting malware scan for: /Volumes/Install/Install.app

logType: 1
timeZone: GMT-0700 (GMT-7) offset -25200
...
processIdentifier: 1374
process: XprotectService
processImagePath: /System/Library/PrivateFrameworks/XprotectFramework
.framework/Versions/A/XprotectService.xpc/Contents/MacOS/XprotectService
...
senderImagePath: /System/Library/PrivateFrameworks/XprotectFramework
.framework/Versions/A/XprotectService.xpc/Contents/MacOS/XprotectService
sender: XprotectService
...
subsystem: com.apple.xprotect
category: xprotect
...

The abridged output contains the properties of the OSLogEventProxy object
most relevant to security tools. Table 6-1 summarizes these alphabetically.

Log Monitoring!!!151

As with many OSLogEventProxy object properties, you can use them in custom
predicates.

Table 6-1: Security-Relevant OSLogEventProxy Properties

Property name Description

category The category used to log an event

composedMessage The contents of the log message

logType For logEvent and traceEvent, the message’s type (default,
info, debug, error, or fault)

processIdentifier The process ID of the process that caused the event

processImagePath The full path of the process that caused the event

senderImagePath The full path of the library, framework, kernel extension,
or Mach-O image that caused the event

subsystem The subsystem used to log an event

type The type of event (such as activityCreateEvent, activity
TransitionEvent, or logEvent)

Determining Resource Consumption
It’s important to consider the potential resource impact of streaming log
messages. If you take an overly consumptive approach, you can incur a sig-
ni!cant CPU cost and impact to the responsiveness of the system.

First, pay attention to the log level. Specifying the debug level will result
in a signi!cant increase in the number of log messages processed against
any predicate. Although the predicate evaluation logic is very ef!cient,
more messages mean more CPU cycles. Thus, a security tool that leverages
the logging subsystem’s streaming capabilities should probably stick to con-
suming the default or info messages.

Equally important to ef!ciency is the predicate you use. Interestingly,
my experiments have shown that the logging daemon wholly evaluates
some predicates, while the logging subsystem frameworks loaded in client
programs, such as the log monitor, handle others. The former is better;
otherwise, the program will receive a copy of every single log message for
predicate evaluation, which can chew up signi!cant CPU cycles. If the log-
ging daemon performs the predicate evaluation, you’ll receive messages
that match the predicate only, which won’t discernibly impact the system.

How can you craft a predicate that the logging daemon will evaluate?
Trial and error have shown that if you specify a process or subsystem in a
predicate, the daemon will evaluate it, meaning you’ll receive only log mes-
sages that match. Let’s look at a speci!c example from OverSight, a tool dis-
cussed in Chapter 12 that monitors the microphone and webcam.11

OverSight requires access to log messages from the core media I/O
subsystem to identify the process accessing the webcam. At the start of the
chapter, I noted that certain versions of macOS store this process ID in
log messages from the core media I/O subsystem that contain the string

152!!!Chapter 6

CMIOExtensionPropertyDeviceControlPID. Understandably, you might be tempted
to craft a predicate that matches this string:

'composedMessage CONTAINS "CMIOExtensionPropertyDeviceControlPID"'

This predicate would lead to processing inef!ciencies, however, as the
logging daemon will send all messages that the logging frameworks loaded in
our log monitor to perform the predicate !ltering. Instead, OverSight lever-
ages a broader predicate that makes use of the subsystem property:

subsystem=='com.apple.cmio'

This approach causes the logging daemon to perform the predicate
matching, then deliver only messages from the core media I/O subsystem.
OverSight itself manually performs the check for the CMIOExtension Property
Device ControlPID string:

if(YES == [logEvent .composedMessage
containsString:@"CMIOExtensionPropertyDeviceControlPID ="]) {
 // Extract the PID of the processes accessing the webcam.
}

The tool leverages a similar process to return log messages associated
with mic access. As a result, it can effectively detect any process (including
malware) attempting to use either the mic or webcam.

Conclusion
In this chapter, you saw how to use code to interface with the operating
system’s universal logging subsystem. By reverse engineering the private
LoggingSupport framework, we programmatically streamed messages match-
ing custom predicates and accessed the wealth of data found in the logging
subsystem. Security tools could use this information to detect new infections
or even uncover the malicious actions of persistently installed malware.

In the next chapter, you’ll write network monitoring logic using Apple’s
powerful and well-documented network extensions.

Notes
 1. Nicole Fishbein and Avigayil Mechtinger, “A Storm Is Brewing: IPStorm

Now Has Linux Malware,” Intezer, November 14, 2023, https://www.intezer
.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/.

 2. “The XCSSET Malware,” TrendMicro, August 13, 2020, https://documents
.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf. To read more about
the abuse of remote logins in macOS, see Jaron Bradley, “What Does
APT Activity Look Like on macOS?,” The Mitten Mac, November 14,
2021, https://themittenmac.com/what-does-apt-activity-look-like-on-macos/.

https://www.intezer.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/
https://www.intezer.com/blog/research/a-storm-is-brewing-ipstorm-now-has-linux-malware/
https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf
https://documents.trendmicro.com/assets/pdf/XCSSET_Technical_Brief.pdf
https://themittenmac.com/what-does-apt-activity-look-like-on-macos/

Log Monitoring!!!153

 3. Calum Hall and Luke Roberts, “The Clock Is TCCing,” paper presented
at Objective by the Sea v6, Spain, October 12, 2023, https://objectivebythe
sea.org/v6/talks/OBTS_v6_lRoberts_cHall.pdf.

 4. “Logging,” Apple Developer Documentation, https://developer.apple.com/
documentation/os/logging.

 5. Howard Oakley, “How to Reveal ‘Private’ Messages in the Log,” Eclectic
Light, May 25, 2020, https://eclecticlight.co/2020/05/25/how-to-reveal-private
-messages-in-the-log/.

 6. See Howard Oakley, “log: A Primer on Predicates,” Eclectic Light,
October 17, 2016, https://eclecticlight.co/2016/10/17/log-a-primer-on
-predicates/, and “Predicate Programming Guide,” Apple Developer
Documentation, https://developer.apple.com/library/archive/documentation/
Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html.

 7. “OSLog,” Apple Developer Documentation, https://developer.apple.com/
documentation/oslog.

 8. Pat Zearfoss, “Objective-C Quickie: Printing All Declared Properties of
an Object,” April 14, 2011, https://zearfoss.wordpress.com/2011/04/14/objective
-c-quickie-printing-all-declared-properties-of-an-object/.

 9. The list is available at https://developer.apple.com/library/archive/documentation/
Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html#//
apple_ref/doc/uid/TP40008048-CH100-SW1.

 10. Read more about Swift’s Mirror API in Antoine van der Lee, “Re#ection
in Swift: How Mirror Works,” SwiftLee, December 21, 2021, https://www
.avanderlee.com/swift/re"ection-how-mirror-works/.

 11. See https://objective-see.org/products/oversight.html.

https://objectivebythesea.org/v6/talks/OBTS_v6_lRoberts_cHall.pdf
https://objectivebythesea.org/v6/talks/OBTS_v6_lRoberts_cHall.pdf
https://developer.apple.com/documentation/os/logging
https://developer.apple.com/documentation/os/logging
https://eclecticlight.co/2020/05/25/how-to-reveal-private-messages-in-the-log/
https://eclecticlight.co/2020/05/25/how-to-reveal-private-messages-in-the-log/
https://eclecticlight.co/2016/10/17/log-a-primer-on-predicates/
https://eclecticlight.co/2016/10/17/log-a-primer-on-predicates/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Predicates/AdditionalChapters/Introduction.html
https://developer.apple.com/documentation/oslog
https://developer.apple.com/documentation/oslog
https://zearfoss.wordpress.com/2011/04/14/objective-c-quickie-printing-all-declared-properties-of-an-object/
https://zearfoss.wordpress.com/2011/04/14/objective-c-quickie-printing-all-declared-properties-of-an-object/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html#//apple_ref/doc/uid/TP40008048-CH100-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html#//apple_ref/doc/uid/TP40008048-CH100-SW1
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ObjCRuntimeGuide/Articles/ocrtTypeEncodings.html#//apple_ref/doc/uid/TP40008048-CH100-SW1
https://www.avanderlee.com/swift/reflection-how-mirror-works/
https://www.avanderlee.com/swift/reflection-how-mirror-works/
https://objective-see.org/products/oversight.html

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

